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1 Introduction

Despite the availability of many effective 3D retrieval methodologies, only a handful of commercial
products currently incorporate such techniques. A major barrier to the adoption of these techniques
in commercial services is the lack of standardized evaluation: it is almost never obvious what is the
best shape characterization or the best similarity measure for a given domain. Having a common
understanding on 3D shape retrieval would help users to orient themselves to select the retrieved
technique most suitable for their own specific needs. In this context, the aim of SHREC is to evaluate
the performance of existing 3D-shape retrieval algorithms, in terms of their strengths as well as their
weaknesses, using a common test collection that allows for a direct comparison of methods.

The pecularity of 3D media retrieval is given by the existence of many different representations for
3D shapes, from point-set models, to the many types of boundary representations and decomposition
models [1]. Each particular representation is suitable to cope with particular application needs. For
this reason, after the first successful experience of SHREC 2006, the contest has moved towards a
multi-track organization.

In this report we present the results of the Watertight Models Track. Watertight models are object
models represented by seamless surfaces, meaning that there are no defective holes or gaps. They
turn out to be useful for many applications, such as rapid prototyping or digital manifacturing.

2 Data collection and queries

The collection to search in was made of 400 watertight mesh models, subdivided into 20 classes of 20
elements each. The experiment was designed so that each model was used in turn as a query against
the remaining part of the database, for a total number of 400 queries. For a given query, the goal of
the track is to retrieve the most similar objects, that is, the whole set of objects of the class it belongs
to.

The type and categorization of the models in a database are crucial when testing a retrieval
method, and it is difficult to separate out the influence of the dataset in the performance [2]. On
the basis of these observations, we built our benchmark, shown in Figure 1. We manually established
the ground truth, so that the classes exhibit sufficient and diverse variation, from pose change (e.g.
the “armadillo” class) to shape variability in the same semantic group (e.g. the class of vases). All
classes are made up of the same number of objects (20), so that generality is kept constant for each
query [3], thus preventing from giving a different level of importance to different queries. Generality
represents the fraction of relevant items to a given query with respect to the irrelevant embedding,
i.e. the whole set of non-relevant models in the database; as observed in [3], it is a major parameter
in influencing the retrieval performance.

The original models of our database were collected from several web repositories, namely the
National Design Repository at Drexel University [6], the AIM@SHAPE repository [7], the Princeton
Shape Benchmark [8], the CAESAR Data Samples [9], the McGill 3D Shape Benchmark [10], the 3D
Meshes Research Database by INRIA GAMMA Group [11], the Image-based 3D Models Archive.
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Figure 1: The database that has been used, divided into classes.

3 Participants

Each participant was asked to submit up to 3 runs of his/her algorithm, in the form of 400 × 400
dissimilarity matrices; each run could be for example the result of a different setting of parameters
or the use of a different similarity metric. We remind that the entry (i, j) of a dissimilarity matrix
represent the distance between models i and j.

This track saw 5 groups of participants:

1. Ceyhun Burak Akgül, Francis Schmitt, Bülent Sankur and Yücel Yemez, who sent 3 matrices;

2. Mohamed Chaouch and Anne Verroust-Blondet with 2 matrices;

3. Thibault Napoléon, Tomasz Adamek, Francis Schmitt and Noel E. O’Connor with 3 matrices;

4. Petros Daras and Athanasios Mademlis sent 1 matrix;

5. Tony Tung and Francis Schmitt with 3 matrices.

For details on the algorithms and the different runs proposed by the participants, the reader is
referred to their papers, included at the end of this report.

4 Performance measures

As observed in section 2, each query has its own set of 20 relevant items. We evaluated all the methods
using the standard measures briefly described below.
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1. Precision and recall are two fundamental measures often used in evaluating search strategies.
Recall is the ratio of the number of relevant records retrieved to the total number of relevant
records in the database, while precision is the ratio of the number of relevant records retrieved
to the size of the return vector [4]. In our contest, for each query the total number of relevant
records in the database is always 20, that is the size of each class. Starting from here, we evaluate
the precision-recall measures for each query, and then average it over each class and over the
entire database. An averaged recall value can be calculated through the so-called average

dynamic recall, defined in our context as ADR = 1
20

∑20
i=1

RI(i)
i

, where RI(i) indicates the
number of retrieved relevant items within the first i retrieved items. ADR ∈ [0, 1] and its best

value is ADR = 1
20

∑20
i=1

i

i
= 1.

2. We compute the percentage of success for the first (PF) and the second (PS) retrieved
items, i.e. the probability of the first and second elements in the return vector to be relevant
to the given query, and average them over the whole set of queries. For an ideal method
PF = PS = 100%.

3. With respect to a query, the average ranking is computed averaging the retrieval ranking (i.e.
the positions in the return vector of ordered items) of all relevant items. The lower this value,
the better the method. The optimal value in our experimental setting is 1+2+···+20

20 = 10.5.

4. The last place ranking is defined as L = 1− Rank−n

N−n
, where Rank indicates the rank at which

the last relevant object is found, n is the number of relevant items (n = 20), and N is the size
of the whole database (N = 400) [5]. In this case, the performance of a method is as good as L
is high; in fact L ∈ [0, 1], and the best value, occurring when the last relevant object is in the
20th position, is L = 1 −

20−20
400−20 = 1.

5. There is a series of vectors to describe the performance of retrieval methods that descend from
the so called gain vector G, which is, in our context, a 400-sized vector such that G(i) = 1 if
the i-th retrieved item is in the same class of the query, 0 otherwise. The ideal gain vector is
IG(i) = 1, ∀i = 1, . . . , 400. The cumulated gain vector is defined as

CG(i) =

{

G(1) i = 1
CG(i − 1) + G(i) otherwise

;

in our case the ideal vector would be ICG(i) = 1 · i, i = 1, . . . , 400.
The discounted cumulated gain vector is

DCG(i) =

{

CG(1) i = 1
DCG(i − 1) + (G(i)/ log(i)) otherwise

.

The ideal vector IDCG is obtained using ICG and IG instead of, respectively, CG and G.

We implemented these measures using the software Matlab, version 7.1 (R14), installed on a Intel(R)
Pentium(R) 4 CPU 3.00Ghz, 1.00 Gb of RAM.

5 Results and discussion

Most of the participants sent more than one matrix. In what follows, we compare the performance
of the participants using their single best run, selected using the previously described measures. Our
choice is motivated by reasons of readability of tables and figures; anyway, we report the results of
each run in the Appendix. For all participants, the selected run coincides with the best one according
to all measures used, except for Agkul et al., that proposed two runs with very similar performances,
so that the choice of the best one was not unique; in this case, we choose the best performing one in
terms of the area of the precision-recall graph. The comparison of the performance of different runs
for the same authors reported in the Appendix allows to evaluate the dependence of each method
on different choices of parameters. A general observation is that almost all the methods of the same
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Figure 2: Comparing the best final Precision-recall graphs of each participant.

authors perform more or less the same.

Fig.2 shows the standard precision-recall graph, plotting for each participant precision values vs.
recall values. We remind that curves shifted upwards and to the right indicate a superior performance.

Numerical values for both the average (w.r.t. all the queries) precision and recall for return
vectors of 20, 40, 60 and 80 items (i.e. 1, 2, 3, and 4 times the number of relevant items to each
query) are reported in Table 1 (a) and (b), respectively.

Precision after 20 40 60 80
Akgul et al. 0.626375 0.366062 0.262125 0.205469
Chaouch et al. 0.546250 0.329437 0.241417 0.190938
Napoleon et al. 0.604875 0.366312 0.262750 0.205719
Daras et al. 0.564500 0.346312 0.252208 0.199594
Tung et al. 0.714875 0.414375 0.290958 0.225687
Ideal 1 0.5 0.3 0.25

(a)

Recall after 20 40 60 80
Akgul et al. 0.626375 0.732125 0.786375 0.821875
Chaouch et al. 0.546250 0.658875 0.724250 0.763750
Napoleon et al. 0.604875 0.732625 0.788250 0.822875
Daras et al. 0.564500 0.692625 0.756625 0.798375
Tung et al. 0.714875 0.828750 0.872875 0.902750
Ideal 1 1 1 1

(b)

Table 1: Precision and Recall after 20, 40, 60 and 80 retrieved items.

The average dynamic recall (ADR) values for each participants are listed in the following
table. As before, these values refer to the average value with respect to all the queries.

Akgul et al. Choauch et al. Napoleon et al. Daras et al. Tung et al.
ADR 0.7931 0.7206 0.7795 0.7546 0.8577
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Deepening in this kind of analysis, we can also deal with class precision, so that it is possible
to make consideration not only on the average performance on the given database, but also on the
specific class results. In this sense we invite the reader to have a look at the graphs in Fig. 5. It can
be seen that the methods can perform in a very different manner when dealing with different classes
of objects; for example, while in (a) Chaouch et al. gives the worst result (armadillo class), in (b) it
yelds the best one (tables class). Moreover, some classes are uniformly easy to deal with, such as the
class of pliers (c), while others are uniformly difficult, as the class of vases (d).
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(c) (d)

Figure 3: Precision-recall graphs on 4 classes of the database.

Returning to the whole database, we observed that all the methods guarantee the identity property
(i.e. d(Qi, Qi) = 0 ∀i = 1, . . . , 400, Qi ith model in the database), so that the percentage of success
PF of the first retrieved item is always 100%:

Akgul et al. Choauch et al. Napoleon et al. Daras et al. Tung et al.
PF 100% 100% 100% 100% 100%

,

The percentages of success PS w.r.t. the second retrieved item are listed below:

Akgul et al. Choauch et al. Napoleon et al. Daras et al. Tung et al.
PS 93.97% 92.81% 95.87% 93.33% 97.68%

.

Concerning the average ranking we refer the reader to the histogram in Figure 4(a). Let us
remark that in our case the ideal value for the average rank is 10.5, and a lower height of the bars
indicate a superior performance.
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The last place ranking is evaluated in Figure 4(b). The value yield by an ideal method is equal
to 1. This measure gives an estimate of the number of the retrieved items a user has to search in order
to have a reasonable expectation of finding all relevant items. The higher the bars in the histogram,
the lower the number of items to check, meaning better results.
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Figure 4: Average ranking (a) and last place ranking (b) of all the methods.

Finally, let us deal with the mean cumulated and mean discounted cumulated gain vectors,
illustrated in Fig. 5. We show the 400-elements vectors (top), as defined in Section 4, and also a
detailed view of the behavior of the first 20 components of the vectors (bottom), that is the behavior
for the very first part of the return vector.
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Figure 5: Mean cumulated gain vector (left) and mean discounted cumulated gain vector (right).
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6 Conclusions

This paper proposed a comparative analysis of the retrieval performances of 5 different techniques,
using a benchmark database of 400 models represented by watertight triangular meshes. Anyway, we
warn the reader that, despite the care used in designing a benchmark and evaluating the results, it
may happen that a single test collection delivers only a partial view of the whole picture.
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Appendix

In this Appendix we show separately the results of each single run of the participants. The majority
of the participants sent 2 or 3 matrices, except from Daras et al. with only 1 matrix, for whose results
the reader is referred to the previous Sections.

Two of the runs sent by Akgul et al., namely the 1st and the 3rd ones, are really similar; globally,
the 3rd run seems to be the most performing one, although for some measures it may happen that
the 1st run (e.g. with PSs) or even the 2nd run (e.g. last place ranking) give better results. For the
other retrieval techniques, it is easier to establish the most performing run.

In any case, we can observe that almost all the methods of the same group perform more or
less the same, thus generally revealing a small dependence on the choice of different parameters. A
significant difference in the performance obtained by different runs of the same participant can be
observed only for run number 3 sent by Napoléon et al., as a consequence of substantial changes in
the shape descriptor used (see their paper at the end of this report for further details).

The precision-recall graphs are shown in Fig. 6. Numerical values of precision and recall are
reported in Table 2. PFs are 100% for all techniques and runs, while Table 3 yield details about the
PSs. The average dynamic recall is illustrated in Table 4. Average ranking and last place ranking are
summarized by the histograms of Figure 7. Finally, Figure 8 is related to mean cumulated and mean
discounted cumulated gain vectors.
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Figure 6: Precision-recall graphs for each participant.

Precision after Recall after
20 40 60 80 20 40 60 80

Akgul et al. run 1 0.6158 0.3639 0.2621 0.2068 0.6158 0.7277 0.7864 0.8271
Akgul et al. run 2 0.6016 0.3577 0.2566 0.2023 0.6016 0.7155 0.7697 0.8092
Akgul et al. run 3 0.6264 0.3661 0.2621 0.2055 0.6264 0.7321 0.7864 0.8219

Precision after Recall after
20 40 60 80 20 40 60 80

Chaouch et al. run 1 0.5462 0.3294 0.2414 0.1909 0.5462 0.6589 0.7242 0.7638
Chaouch et al. run 2 0.5125 0.3126 0.2299 0.1840 0.5125 0.6251 0.6896 0.7360

Precision after Recall after
20 40 60 80 20 40 60 80

Napoleon et al. run 1 0.6049 0.3663 0.2627 0.2057 0.6049 0.7326 0.7882 0.8229
Napoleon et al. run 2 0.5859 0.3601 0.2590 0.2020 0.5859 0.7201 0.7769 0.8081
Napoleon et al. run 3 0.4001 0.2658 0.2030 0.1663 0.4001 0.5316 0.6089 0.6650

Precision after Recall after
20 40 60 80 20 40 60 80

Tung et al. run 1 0.7149 0.4144 0.2910 0.2257 0.7149 0.8287 0.8729 0.9027
Tung et al. run 2 0.7035 0.4121 0.2905 0.2259 0.7035 0.8241 0.8715 0.9035
Tung et al. run 3 0.6831 0.4022 0.2867 0.2231 0.6831 0.8044 0.8601 0.8922

Table 2: Precision and recall after 20, 40, 60 and 80 retrieved items, for each run of the participants.
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PS
Akgul et al. run 1 94.96%
Akgul et al. run 2 93.61%
Akgul et al. run 3 93.97%

Chaouch et al. run 1 92.81%
Chaouch et al. run 2 89.73%

Napoleon et al. run 1 95.87%
Napoleon et al. run 2 95.42%
Napoleon et al. run 3 80.59%

Tung et al. run 1 97.68%
Tung et al. run 2 97.58%
Tung et al. run 3 97.49%

Table 3: Percentage of success of the second items retrieved, computed for each run.

ADR
Akgul et al. run 1 0.7888
Akgul et al. run 2 0.7786
Akgul et al. run 3 0.7931

Chaouch et al. run 1 0.7206
Chaouch et al. run 2 0.6831

Napoleon et al. run 1 0.7795
Napoleon et al. run 2 0.7646
Napoleon et al. run 3 0.5770

Tung et al. run 1 0.8577
Tung et al. run 2 0.8496
Tung et al. run 3 0.8354

Table 4: (a) Average dynamic recall, computed for each run.
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Figure 7: Average ranking (left) and last place ranking (right), for each run.
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Figure 8: Cumulated gain vectors (left) and discounted cumulated gain vectors (right) within the first
20 items retrieved, for each run.
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Abstract 

 

In this brief communication, we provide an overview of the density-based shape description framework in 

and the details of the runs we have submitted to the Watertight Models Track of the SHREC’07. 

 

1. Introduction 

 

Density-based shape description is a framework to extract 3D shape descriptors from local surface features 

characterizing the object geometry [1, 2]. The feature information is processed with the kernel 

methodology for density estimation (KDE) [3, 4] and the probability density function (pdf) of the local 

feature is estimated at chosen target points. The shape descriptor vector is then simply a discretized version 

of this probability density. This density-based approach provides a mechanism to convert local shape 

evidences, using KDE, into a global shape description. Our recent work on density-based shape descriptors 

[1, 2] for 3D object retrieval has proven that this scheme is both computationally rapid and effective 

compared to other state-of-the-art descriptors. In this brief communication, we provide an overview of the 

density-based shape description framework in Section 2 and the details of the runs we have submitted to the 

Watertight Models Track of the SHREC’07 in Section 3.   

 

2. Overview of the Description Framework  

 

A density-based descriptor of a 3D shape is defined as the discretized pdf of some surface feature S taking 

values within a subspace 
S
R  of m

� . The feature S is local to the surface patch and treated as a random 

variable. For an object 
l

O  represented as a triangular mesh, evaluating the feature S at each triangle and/or 

vertex, we can obtain a set of observations about S, that we call the source set, denoted as { }
1

K

k S k
s

=
∈R . Let 

( )
l

f O⋅  be the pdf of S. Using the source set { }
1

K

k S k
s

=
∈R , the value of this pdf at an arbitrary m-

dimensional point t (which is in the range space 
S
R  of the feature S) can be estimated by the following 

KDE equation [3]:  

 

( )( )1 1

1

( )  
K

l k k

k

f t O w H H t s
− −

=

= −∑ K     (1) 

 

where : m →� �K�  is a kernel function, H  is a m m×  matrix composed of a set of design parameters 

called bandwidth parameters, and 
k

w  is the importance weight associated with the kth observation 
k
s . 

Suppose that we have specified a finite set of points { }
1

N

S n S n
t

=
= ∈R R , called the target set, within 

S
R . 

The density-based descriptor 
lS O

f  for the object 
l

O  (with respect to the feature S) is then simply an N-

dimensional vector whose entries consist of the pdf values computed at the target set { }
1

N

S n S n
t

=
= ∈R R , 

that is, 
1( ), , ( )

l
l N lS O

f t O f t O=   f … . To convert this general framework into a practical description scheme, 

we have to address the following issues: 

 

(i) Feature Design: Which surface features should be used to capture local characteristics of the 

surface? (See Section 2.1.) 
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(ii) Target Selection: How to determine the targets , 1,...,
n S
t n N∈ =R  at which we will evaluate the 

KDE equation in (1)? (See Section 2.2.) 

(iii) Density Estimation: How to choose the kernel function K� and how to set the bandwidth parameter 

matrix H  in (1) and how to evaluate this equation in a computationally efficient manner? (See 

Section 2.3.)      

 

2.1. Feature Design 
 

In the following, we assume that the 3D object is embedded on a canonical reference frame of 3
�  whose 

origin coincides with the center of mass of the object. The reference frame can be computed using the 

continuous PCA approach [4].    

 

1. Radial distance R measures the distance of a surface point Q to the origin (centroid). Though not an 

effective shape feature all by itself; when coupled to other local surface features, it helps to manifest their 

distribution at varying radii. 

 

2. Radial direction R̂  is a unit-norm vector ˆ ˆ ˆ( , , )
x y z

R R R  collinear with the ray traced from the origin to a 

surface point Q. This unit-norm vector is obviously scale-invariant. 

 

3. Normal direction N̂  is simply the unit normal vector at a surface point and represented as a 3-tuple 

ˆ ˆ ˆ( , , )
x y z

N N N . Similar to the radial direction R̂ , the normal N̂  is scale invariant.  

 

4. Radial-normal alignment A is the absolute cosine of the angle between the radial and normal directions 

and is computed as ˆ ˆ, [0,1]A = 〈 〉 ∈R N . We can alternatively remove the absolute value and redefine A as 

[ ]ˆ ˆ, 1,1A = 〈 〉∈ −R N  for meshes with reliable orientation. This feature measures crudely how the surface 

deviates locally from sphericity. For example, if the local surface approximates a spherical cap, then the 

radial and normal directions align, and the alignment A approaches unity. 

 

5. Tangent-plane distance D stands for the absolute value of the distance between the tangent plane at a 

surface point and the origin. D is related to the radial distance R by D RA= .  

    

6. The shape index SI provides a local categorization of the shape into primitive forms such as spherical cap 

and cup, rut, ridge, trough, or saddle. In the present work, we consider the parameterization proposed in [5] 

given by 

 

1 2

1 2

1 2
arctan

2
SI

κ κ
π κ κ

 + = −    −   
, 

 

where 
1
κ  and 

2
κ  are the principal curvatures at the surface point. SI is confined within the range [ ]0,1  and 

not defined when 
1 2

0κ κ= = (planar patch). 

 

Our previous work [1, 2] has shown that the density-based framework is more effective when we consider 

the joining of the local features described above, to obtain even higher dimensional features.  In the present 

work, we consider three such instances: 

 

Radial feature 
1
S  is obtained by augmenting the scale-invariant radial direction vector R̂  with the 

rotation-invariant radial distance R. The resulting 4-tuple 
1

ˆ ˆ ˆ( , , , )
x y z

S R R R R�  can be viewed as an 

alternative to Cartesian coordinate representation of the surface point. In this parameterization, however, 

the distance and direction information are decoupled. With this decoupling, the range of individual features 
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can be determined independently. In fact, R̂  lies on the unit 2-sphere, and the scalar R lies on the interval 

max
(0, )r , where 

max
r  depends on the size of the surface. 

 

Tangent plane feature 
2

S  is obtained by joining the tangent plane distance D with the normal direction N̂ , 

providing a 4-dimensional vector 
2

ˆ ˆ ˆ( , , , )
x y z

S D N N N�  that corresponds to the representation of the local 

tangent plane. As in the radial case, this representation also separates the distance and direction information 

concerning the tangent plane. 

 

Finally, we define a third feature 
3

( , , )S R A SI� , which aims at encoding the interaction between the radial 

and normal directions through the alignment feature A and at adding further local surface information 

through the shape index SI. Again the radial distance R augments the two-tuple ( , )A SI  to capture the 

characteristics of the shape at different distances from the center of the object. 

 

In our runs, we will use the discretized pdfs of all these three features as descriptors and combine their 

individual discrimination capabilities (see Section 3).  

 

2.2. Target Selection 
 

The targets sets for our local features occur as the Cartesian products of their individual constituents. For 

instance, the 
1
S -feature is composed of a scalar feature 

max
(0, )R r∈  and a unit-norm 3-vector 2ˆ ∈R S . 

Accordingly to determine the target set 
1S

R , we first uniformly sample the interval 
max

(0, )r  to obtain a 

distance set 
R
R , then partition the unit 2-sphere using the octahedron subdivision scheme described in [1] 

to obtain a direction set 
R̂
R , and finally taken their Cartesian products to obtain 

1
ˆS R= ×
R

R R R . Note that 

max
r  depends on the type of scale normalization applied to the object (see Section 3). The target set for 

2
ˆ ˆ ˆ( , , , )
x y z

S D N N N�  can be obtained likewise. Finally the target set for 
3

( , , )S R A SI�  is given by 

3S R A SI= × ×R R R R , where both 
A
R  and 

SI
R  are uniformly sampled versions of the interval [ ]0,1  since 

both A and SI share the same unit-interval as range.              

 

2.3. Density Estimation 
 

It is known that the particular functional form of the kernel does not significantly affect the accuracy of the 

estimator [3]. In our scheme, we choose the Gaussian kernel since there exists a fast algorithm, the fast 

Gauss transform (FGT) [6], to rapidly evaluate large KDE sums in ( )+O K N  instead of ( )O KN -

complexity of direct evaluation, where K is the number of sources and N is the number of targets. 

 

The setting of the bandwidth matrix H  has been shown to be critical for accurate density estimation [3], 

which in turn affects shape discrimination and retrieval performance [1]. The optimal bandwidth for KDE 

depends on the unknown density itself [3], making the appropriate choice of the bandwidth parameter a 

challenging problem. Since the density-based paradigm relies on the premise that the features of similar 

shapes induce similar probability distributions, the optimal set of bandwidth parameters is expected to be 

different for each shape class. In content-based retrieval, since we do not have this kind of information, we 

can set the bandwidth parameter at either object-level or at database-level. In [1], it has been 

experimentally demonstrated that database level setting yields better discrimination performance by as 

much as 11%. Accordingly, we can set the bandwidth parameter by averaging all object-level bandwidths 

given by Scott’s rule [3] or by averaging the covariance matrix of the observations over the objects. This 

averaging process has some intuitive plausibility as it eliminates object-level details and provides us with 

bandwidth parameters that regularize class-level information. 
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3. Experimental Details 

 

Prior to descriptor computation, all models have been normalized so that descriptors are translation, 

rotation, flipping and scale invariant. For translation invariance, the object’s center of mass is considered as 

the origin of the coordinate frame. For rotation and flipping invariance, we applied the continuous PCA 

algorithm [4]. For isotropic scale invariance, we calculate a scale factor so that the average point-to-origin 

distance is unity. 

 

Details about the runs that we submit for the Watertight Track are as follows: 

 

Run 1.  

- We reorient the mesh so that the angle between radial and normal directions at a surface point is 

always acute. 

- We calculate a bandwidth matrix by averaging the covariance matrices of the observations over 

the meshes. 

- We use three descriptors: 

1. 1024-point pdf of 
1

ˆ ˆ ˆ( , , , )
x y z

S R R R R�  

2. 1024-point pdf of 
2

ˆ ˆ ˆ( , , , )
x y z

S D N N N�  

3. 576-point pdf of 
3

( , , )S R A SI�  where the alignment A is defined as ˆ ˆ, [0,1]A = 〈 〉 ∈R N . 

- We use the 
1
L -metric to obtain three distance measures that we sum up to obtain a final 

dissimilarity value.   

 

Run 2.  

- We keep the orientation of the mesh. 

- The remaining setting is the same as the Run 1. 

 

Run 3.  

- The setting is the same as the Run 2 except that the alignment A is defined as [ ]ˆ ˆ, 1,1A = 〈 〉∈ −R N . 
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1 Introduction

For Watertight Models Track of SHREC’07 ( SHape REtrieval Contest 2007 organized by the Network of Ex-
cellence AIM@SHAPE ), we tested our new 2D/3D approach based on depth lines (DLA) with two different
similarity measures.
Our method is detailed in the article “3D Model Retrieval based on Depth Line Descriptor” [CVB07] with the
following abstract: “In this paper, we propose a novel 2D/3D approach for 3D model matching and retrieving.
Each model is represented by a set of depth lines which will be afterward transformed into sequences. The depth
sequence information provides a more accurate description of 3D shape boundaries than using other 2D shape
descriptors. Retrieval is performed when dynamic programming distance (DPD) is used to compare the depth
line descriptors. The DPD leads to an accurate matching of sequences even in the presence of local shifting on
the shape. Experimentally, we show absolute improvement in retrieval performance on the Princeton 3D Shape
Benchmark database.”

2 Method

Our 3D shape retrieval system compares 3D models based on their visual similarity using depth lines extracted
from depth images:

- The process first normalizes and scales 3D model into a bounding box.
- Then, it computes the set of N × N depth-buffer images associated to the six faces of the bounding box.
- The system then generates 2 × N depth lines per image, considering each depth image as a collection of

N horizontal and N vertical depth lines.
- Finally, each depth line is encoded in a set of N states called sequence of observations.

The shape descriptor consists in the set of 6 × 2 × N sequences, with N = 32.
Please see our paper for further details.

3 Experimental results

We submitted two runs:

1. In run 1 (DLA DPD), to perform retrieval results, we tested the dynamic programming distance (DPD)
because it tolerates some local shifting on the shape. We used here the Needleman-Wunsch algorithm
[NW70].

2. In run 2 (DLA HD), to compare the depth line descriptors, we used the Hamming distance (HD) which
returns the number of corresponding state positions that differ.

∗This work has been supported in part by the DELOS NoE on Digital Libraries (EU IST NoE G038-507618).

1



DLA_DPD Horse 0.2687 0.2846 0.3069 0.3112 0.3324 0.3492 0.3632 0.3709 0.3832

DLA_HD Horse 0.3553 0.3826 0.3977 0.4284 0.4462 0.4680 0.4724 0.4851 X    0.5038

DLA_DPD Ant 0.3126 0.3245 0.3248 0.3409 0.3715 0.3743 0.4052 0.4253 0.4254

DLA_HD Ant 0.4211 0.4243 0.4581 0.4648 0.5055 0.5242 0.5386 X    0.5445 0.5471

Figure 1: Examples of similarity search. For each query (from “Four-legged animals class” and “Ants class”), we
show the top 9 objects matched with DLA approach (using DPD and HD). The similarities between the query
models and the retrieved models are given below corresponding images. X and x indicate that the retrieved
models belong or don’t belong to the query’s class, respectively.
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Abstract— We describe in this paper two methods for 3D shape
indexing and retrieval of Watertight models proposed by the
SHREC’07 Watertight track of the CNR-IMATI. The first one is
a 2D multi-view method based on silhouettes intersections. The
second one is another a 2D multi-view method which extracts
the contour convexities and concavities at different scale levels.
In this second approach the optimal matching of two shape
representations is achieved using dynamic programming. This
two methods show interesting results with a compromise between
advantages and weaknesses of each one.

I. INTRODUCTION

We proposed two methods for the Watertight track proposed
by the CNR-IMATI for the 3D Shape Retrieval Contest 2007.
Each one is based on a multi-view approach which keeps
3D object coherence by considering simultaneously a set of
images in specific view directions. The various silhouettes of
an object being strongly correlated, using a set of them help
to better discriminate one object among others.

First of all, we have to get a robust normalization of the
object pose and object scale in order to remain invariant
to various geometrical transformations (translation, rotation,
scaling). We used a Principal Continuous Component Analysis
[1][2] and the smallest enclosing sphere [3] to solve these
problems.

The first method is based on silhouettes intersection. We
captured a set of views of an object and we extract its
silhouette n each view. The distance between two silhouettes is
chosen as equal to the number of pixels that are not common
to the two silhouettes intersection. The distance between two
objects is just defined as the sum of the distance between their
two sets of silhouettes.

The second approach, is based on the contour convexities
and concavities of the silhouettes of the 3D model presented
in [4]. We capture a set of views of an object and we extract a
normalized contour for each view. We build then a multi-scale
shape representation, where for each contour point we store
information about the convexity/concavity at different scale
levels. We search the optimal match between two objects by
computing the distance between their contour points.

The section 2 presents the normalization method for the
3D models. The section 3 describes the intersection methods.
The section 4 presents the contour convexities and concavities
approach. And the section 5 presents experimental results.

II. MODEL NORMALIZATION

The first step before computing the distance between two
3D models is to find for them their best pose and scale in
which they can be compared. To get a robust normalization of
the object pose and object scale in order to remain invariant
to various geometrical transformations (translation, rotation,
scaling), we have to find a center, a scale factor and a pose
for each object.

For the center and the scale, we use the smallest enclosing
sphere S [3]. The normalization then becomes :

x =
x− cx(S)

d(S)
, y =

y − cy(S)
d(S)

and z =
z − cz(S)

d(S)

Fig. 1. Smallest enclosing sphere.

where d(S) is the diameter of the smallest enclosing sphere and
ci(S), i = x, y, z are the i-th coordinates of its centre. The
main advantages of the smallest enclosing sphere are that it is
fast to calculate and it allows maximizing the object size inside
the unit sphere. This has for consequence to also maximize
the object silhouette in any view direction, with the guaranty
that the silhouette remains inside the unit disc inscribed in the



image domain associated to this view (no risk of accidental
cropping of the silhouette).

It remains the problem of solving the normalization of
the object pose. For this, we use the Continuous Principal
Component Analysis [1][2]. This approach allows us to define
and orientate the three principal axis of an object in a robust
way and at a very reasonable computation cost.

III. INTERSECTION DESCRIPTOR

A. Signature extraction

The first step before computing a distance between two 3D
models is to find for them their best pose and scale in which
they can be compared. So, we normalize the object using the
model normalization presented in the previous section.

in 2D/3D methods 3D object coherence is reinforced by
considering simultaneously a set of images in specific view
directions. The various silhouettes of an object being strongly
correlated, using a set of them help to better discriminate one
object among others (view [5] for more information). For this,
we can use any set of view directions regularly distributed
in space. We consider here the three orthogonal views along
the oriented principal axis with parallel projections. Three
views instead of a higher number of views allow reducing
the descriptor size.

We choose an image size of 256x256 for each silhouette.
This resolution gives a good precision and a reasonable
computation time. To keep the maximum information from
a silhouette, the simplest way is just to keep its image. We
will then compare two silhouettes by superposing them and
comparing their intersection with their union. A silhouette
being a binary image we can store it in a compressed format
without loss, which is fast to read and to decode when com-
paring silhouettes. The signature of an object is then simply
constituted by the three compressed silhouettes corresponding
to the three oriented principal directions.

Fig. 2. Three silhouettes of an object.

B. Signature matching

The distance between two objects is defined as the distance
between their two sets of silhouettes. The three silhouettes of
each set being sorted according the three principal axis, this
distance is then just defined as the sum of the distances of
the three pairs of silhouettes, one pair per axis. The distance
between two silhouettes is chosen as equal to the number
of pixels that are non common to the two silhouettes, i.e.
the difference between the areas of the silhouettes union and
the silhouettes intersection. This measure can be done very

efficiently directly on the compressed files by using a simple
run length compression. The distance between two objects is
then straightforward, simpler and fast to compute. To answer
a query we just measure its distance to every database models
and sort the list accordingly.

Fig. 3. Intersections of two objects, in black the parts of the two objects, in
blue the parts of the first one and in red the parts of the second one

Fig. 4. 15 first results for shape retrieval using the intersection method. We
can see the query Watertight model on the top left.

IV. CONTOUR CONVEXITIES AND CONCAVITIES
DESCRIPTOR

A. Signature extraction

Like in the previous method, we find for each object the
best pose and scale in which they can be compared by using
the model normalization presented in section 2.

Similarly the 3D object coherence is reinforced by consider-
ing simultaneously a set of images in specific view directions.

We choose also an image size of 64x64 or 256x256 for
each silhouette. The first one is not very precise but a small
resolution reduces the descriptor size and the computation
time. In an other way, a better resolution gives more precision
with no noise but a bigger descriptor size and computation
time. For the descriptor of a silhouette, we extract information
about the convexity/concavity at 10 scale levels for each
contour point [4]. The representation can be stored in the form
of a 2D matrix where the columns correspond to contour points
(contour parameter u) and the rows correspond to the different
scale levels σ. The position (u, σ) in this matrix contains
information about the degree of convexity or concavity for
the u contour point at scale level σ. The simplified boundary
contours at different scale levels are obtained via a curve
evolution process. We represent each size normalized contour
C with 100 contour points. It should be noted that we use



the same number of contour points for each shape to be
compared. Let the contour C be parameterized by arc-length
u : C(u) = (x(u), y(u)), where u ∈ [0, N ]. The coordinate
functions of C are convolved with a Gaussian kernel φσ of
width σ ∈ {1, 2...σmax}. The resulting contour, Cσ , becomes
smoother with increasing value of σ, until finally the contour
becomes convex.

We propose a very simple measure for the convexity and
concavity of the curve. The measure is defined as the displace-
ment of the contour between two consecutive scale levels. If
we denote the contour point u at scale level σ as p(u, σ), the
displacement of the contour between two consecutive scale
levels d(u, σ) at point p(u, σ) can be defined as the Euclidian
distance between position of p(u, σ) and p(u, σ − 1).

Fig. 5. Example of extracting the MCC shape representation: (a)-original
shape image, (b)-filtered versions of the original contour at different scale
levels, (c)-final MCC representation for 100 contour points at 14 scale levels.

B. Signature matching

When comparing two contours A and B, it is necessary
to examine the distance between each contour point of both
contours. If two contour points uA and uB are represented by
their multi-scale features dA(uA, σ) and dB(uB , σ) respec-
tively, then the distance between the two contour points can
be defined as:

d(uA, uB) =
1
K

K∑
σ=1

|dA(uA, σ)− dB(uB , σ)|

where K is the number of scale (here 10).
As part of the matching process, the best correspondence

between contour points must be determined. We use a dynamic
programming method with an N ∗N distance table to conve-
niently examine the distances between corresponding contour
points on both shapes. The columns represent contour points
of one shape representation and the rows represent the contour
points of the other. Each row/column entry in the table is the

distance between two corresponding contour points calculated
according to the previous equation.

Finding the optimal match between the columns corre-
sponds to finding the lowest cost diagonal path through the
distance table - see the example in Figure 6 where the
contours’ feature vectors are illustrated as grey levels along
each axis.

Fig. 6. Illustration of matching two MCC representations by dynamic
programming.

Finally the distance between two objects is just defined
as the distance between their two sets of silhouettes. The
three silhouettes of each set being sorted according the three
principal axis, this distance is then just defined as the sum
of the distances of the three pairs of silhouettes, one pair per
axis.

Fig. 7. 15 first results for shape retrieval using the contour convexities and
concavities method. We can see the query Watertight model on the top left.

V. EXPERIMENTAL RESULTS

The results presented here was obtained by using three
orthogonal silhouettes aligned with the principal axis as
described above and with a 256x256 pixels resolution for
each silhouette. For the contour convexities and concavities
method, we uses a normalized contour with 100 points and



10 scale levels.

We propose three runs for the SHREC’07 Watertight track:

• Run 1: The contour convexities and concavities
descriptor, with 3 silhouettes aligned with the principal
axis and a resolution of 256x256 pixels for each
silhouettes.

• Run 2: The contour convexities and concavities
descriptor, with 3 silhouettes aligned with the principal
axis and a resolution of 64x64 pixels for each silhouettes.

• Run 3: The multi-view intersection descriptor, with
3 silhouettes aligned with the principal axis and a
resolution of 256x256 pixels for each silhouettes.

Fig. 8. 15 first results for the Watertight query 107.off using the contour
convexities and concavities method with 256x256 pixels resolution and 3
silhouettes.

Fig. 9. 15 first results for the Watertight query 107.off using the contour
convexities and concavities method with 64x64 pixels resolution and 3
silhouettes.

The contour convexities and concavities descriptor results
are better than the multi-view intersection descriptor results
and the resolution of the silhouette have no effect. It is more
robust with small variations of the shape and with the mirrored
silhouettes problem. But the computation time for a query
object of the two method is very different: with the contour
convexities and concavities method the CPU time is ∼ 20 s
and with the multi-view method ∼ 0,06 s.

Fig. 10. 15 first results for the Watertight query 107.off using the intersection
method with 256x256 pixels resolution and 3 silhouettes.

VI. CONCLUSION

We have presented here two different methods on the Water-
tight SHREC’07 track. We observe that we obtain good results
for the two approaches. We can notice that the intersection
method is not very robust with small deformations of an object
and the contour convexities and concavities method needs
more important computation time. This weakness could be
reduced by optimizing the source code.
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The Spherical Trace Transform
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1 Introduction

The large amount of the available 3D models and their increasingly important role for many areas
such as medicine, engineering, architecture, graphics design etc, showed up the need for efficient data
access in 3D model databases. The important question arises is how to search efficiently for 3D objects
into many freely available 3D model databases. A query by content approach seems to be the simpler
and more efficient way. The method is briefly presented in the sequel. A detailed description of the
method can be found in [1].

2 Descriptor Extraction Method

Every 3D object is expressed in terms of a binary volumetric function. In order to achieve translation
invariance, the mass center of the 3D object is calculated and the model is translated so as its center of
mass coincides with the coordinates system origin. Scaling invariance is also accomplished, by scaling
the object in order to fit inside the unit sphere. Then, a set of concentric spheres is defined. For every
sphere, a set of planes which are tangential to the sphere is also defined. Further, the intersection
of each plane with the object’s volume provides a spline of the object, which can be treated as a 2D
image. Next, 2D rotation invariant functionals F are applied to this 2D image, producing a single
value. Thus, the result of these functionals when applied to all splines, is a set functions defined on
every sphere whose range is the results of the functional. Finally, a rotation invariant transform T is
applied on these functions, in order to produce rotation invariant descriptors. For the needs of the
SHREC, the implemented functionals F are the 2D Krawtchouk moments, the 2D Zernike Moments
and the Polar Fourier Transform, while the T function is the Spherical Fourier Transform.

3 Matching

Firstly, the descriptors are normalized so as their absolute sum is equal to 1. Then, the matching is
based on the Minkowski L − 1 distance.
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Abstract

This paper presents an application of the augmented
Multiresolution Reeb graph (aMRG) [3] for shape retrieval
of 3D watertight models. The method is based on a Reeb
graph construction which is a well-known topology based
shape descriptor. With multiresolution property and addi-
tive geometrical and topological informations, aMRG has
shown its efficiency to retrieve high quality 3D models [4].
The SHREC3D 2007 watertight database is composed of
different classes of deformed models (sunglasses, humans,
ants, etc.). We propose to evaluate the aMRG with new
topological features [5] to classify the database. Our ex-
periments show interesting results.

1. Introduction
Our paper proposes a scheme to retrieve similar shapes

in a database of watertight 3D models using a Reeb graph
based approach. As the database is composed of classes
of deformed objects with same topology, the Reeb graph
suits well to describe their shape. It is built using a func-
tion µ based on the mesh connectivity. The surface of the
object is divided in regions according to the values of µ,
and a node is associated to each region. The graph struc-
ture is then obtained by linking the nodes of the connected
regions. Then a multiresolutional Reeb graph can be con-
structed hierarchically, based on a coarse-to-fine approach
node merging [1]. Keeping advantage of the multiresolu-
tional representation, the augmented multiresolution Reeb
graph (aMRG) [3] is an enhanced Reeb graph which in-
cludes topological, geometrical and visual (color or texture)
information in each graph node. Therefore similarity be-
tween two aMRGs can be computed to retrieve the most
similar nodes. Its efficiency has been tested on high quality
model database from museums [4]. Recently, the aMRG
was adapted for full topology matching of human models in
3D video sequence [5]. We propose to evaluate the aMRG
with the new topological features to classify the database.
As shown in Figure 1, the method is able to retrieve sim-
ilar 3D models. Three different runs are proposed for the

Figure 1. Shape matching using aMRG. The aMRG is a topology
based descriptor. As is, it is powerful to retrieve similar models
with various deformations and same topology. Similar sunglasses
can be retrieved, even deformed. Here, the query is the model on
top-left. Distance to query is shown under each compared models.
The table presents the most similar models to the query.

Shape Retrieval Contest (SHREC) for watertight models
2007. The database contains 400 watertight models. The
next section discusses work presents the aMRG. Section 3
presents experimental results.

2. Overview of the aMRG
According to the Morse theory, a continuous function

defined on a closed surface characterizes the topology of the
surface on its critical points. Therefore, a Reeb graph can be
obtained assuming a continuous function µ calculated over
the 3D object surface.

In the SHREC3D for watertight models 2007, models
are defined by their surface and represented as 3D triangu-
lar meshes with vertices located in a Cartesian frame. We
chose the function µ proposed in [1], which is defined as
the integral of the geodesic distance g(v,p) from v to the
other points p of the surface:

µ(v) =
∫
p∈S

g(v,p)dS. (1)

This function µ has the property to be invariant to rotations.
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Its integral formulation provides a good stability to local
noise on surface and gives a measure of the eccentricity of
the object surface points. A point with a great value of µ
is far from the center of the object. A point with a minimal
value of µ is close to the center of the object. Therefore µ is
normalized to µN = µmax−µmin

µmax
, so that values of µ keep

an information on the distance to the object center. The cor-
responding Reeb graph is then obtained by iteratively parti-
tioning the object surface into regular intervals of µN values
and by linking connected regions. For each interval, a node
is associated to each different set of connected triangles.

To construct a Reeb graph of R levels of resolution, µN

is subdivided into 2R intervals from which the object sur-
face is partitioned at the highest level of resolution. Af-
terwards, using a hierarchical procedure, Reeb graphs of
lower resolution levels are obtained by merging intervals
by pairs [1]. The multiresolutional aspect results from the
dichotomic discretization of the function values and from
the hierarchical collection of Reeb graphs defined at each
resolution (cf. Figure 2).

Figure 2. Multiresolution Reeb graph. (a) shows a 3D model.
(b) shows values of function µ on the surface, with Reeb graphs
at resolution r = 4. The graph structure contains topological and
geometrical information.

The original approach, mainly based on the 3D object
topology, is not accurate enough to obtain satisfying match-
ing. Therefore in [3, 4], the multiresolution Reeb graph
has been augmented by merging global and local geomet-
ric properties and visual properties extracted from the ob-
ject surface region S(m) associated to each node m. Topo-
logical aspects of the graph matching procedure was ex-
tended, and similarity calculation with the new features was
adapted. The different features are:

• a statistic measure of the extent of S(m),

• a statistic of the Koenderink shape index for local cur-
vature estimation on S(m),

• a statistic of the orientation of the triangle normals as-
sociated to S(m),

• a statistic of the texture/color mapped on S(m) (not
used here).

The choice of these attributes has been guided by the lit-
terature on 3D content-based retrieval [2]. The result is a
flexible multiresolution and multicriteria 3D shape descrip-
tor including merged topological, geometrical and colori-
metric properties.

In order to obtain a better control of the node matching,
graph topology was exploited in [5]. Topological features
can be deduced by the edge orientations given by µ values.
In addition, multiresolution gives valuable information to
characterize the global shape of models. The shape descrip-
tion is intuitive and completely topological. Its efficiency
has been tested as described in the next section.

3. Experiments
aMRG calculations were performed on a laptop with

Pentium(R) M processor 1.60 GHz and RAM 512 Mo.
aMRG were computed with resolution up to r = 5. The
computation time depends on the number of vertices, and
the complexity of the model. For example, aMRG of water-
tight model 1.off which contains 15000 vertices was com-
puted in ∼ 20 s. And aMRG of model 3.off which contains
6833 vertices was computed in ∼ 12 s.

The calculation of the function µ remains the most
time consuming, even with the Dijkstra coding scheme of
O(NlogN) complexity on N vertices. Our experiments
have pointed out the importance of the choice of the func-
tion µ. The invariance to rotation properties was necessary
for the watertight model database.

For the SHREC3D for watertight models 2007, three
runs were proposed with different aMRG resolution:

• Run1: similarity are computed till resolution r = 3

• Run2: similarity are computed till resolution r = 4

• Run3: similarity are computed till resolution r = 5

Results are slightly similar. The main difference is the
computation time which is a little bit longer for higher res-
olution. The matching procedure based only on topological
information is well adapted for non oriented object. Using
geometrical information can sharpen the retrieval in some
case. Computation time for retrieval of a query on the wa-
tertight model database of 400 models at r = 5 is ∼ 6 s.
Computation time for a query at r = 3 is ∼ 3 s. Figure 3
presents a query results on a monster model. aMRG reso-
lution is 3. Similar models are retrieved, even with strong
deformations. Figure 4 presents a query results on an ant
model. aMRG resolution is 3. The retrieval seems efficient.



Figure 5 presents a query results on a chair model. aMRG
resolution is 4. Chairs and tables are retrieved. Figure 6
presents a query results on a teddybear model. aMRG reso-
lution is 4. Teddybears are well retrieved, even models with
arms or legs missing.

4. Conclusion
We have presented an application of the augmented Mul-

tiresolution Reeb graph for the SHREC3D of watertight
models 2007. As the watertight models have remarkable
topology, we obtained interesting results with our approach.
A full topological approach was used for the graph match-
ing procedure. Three runs at different aMRG resolution
were proposed. The weight of the different attributes can
still be optimized to refine the similarity evaluation. In gen-
eral, it is difficult to classify deformed models as a strong
deformed model can be considered as close to another class.
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Figure 3. Query 62 with run 1. aMRG resolution is 3. Similar
models are retrieved, even with strong deformations.

Figure 4. Query 15 with run 1. aMRG resolution is 3. Ants
models from the database are well retrieved.

Figure 5. Query 6 with run 2. aMRG resolution is 4. Chairs and
tables are retrieved.

Figure 6. Query 137 with run 2. aMRG resolution is 4. Teddy-
bears are well retrieved, even models with arms or legs missing.




